Storm Tracks

(Yohai Kaspi and Tapio Schneider, 2010-12)

Extratropical storms in Earth's atmosphere are concentrated in storm tracks, regions of enhanced eddy kinetic energy found primarily over the Pacific and Atlantic oceans, downstream of the warm western boundary currents (the Kuroshio Current and Gulf Stream). Several fundamental questions about storm tracks are unresolved. For example, it is unclear what determines the longitudinal extent of storm tracks. One might suspect that storm tracks generally terminate over continents, but it turns out this explanation is incomplete at best: in a general circulation model (GCM) without continents, storm tracks can be generated by introducing a localized warm ocean region in midlatitudes (akin to a western boundary current); their longitudinal extent is similar to those in Earth's atmosphere even without continents (Kaspi and Schneider 2011b, 2012). We have investigated what controls storm track features such as their longitudinal extent through simulations with idealized GCMs.

Storm tracks and upstream cooling

A curious and well known feature of Earth's climate is that in winter, eastern continental boundaries in midlatitudes are considerably colder than western boundaries and even continental interiors at similar latitudes. A variety of factors play a role in generating this feature, among them orographic stationary waves in the atmosphere and the generally more maritime character of the climate on western coasts in the region of midlatitude westerly winds. One factor that had been previously unrecognized is that a localized heating such as over western boundary currents leads to upstream cooling (to the west) through the generation of stationary Rossby waves. These waves form a plume that advects cold polar air into the region upstream of the heating and that extends westward over a length scale that depends, among other factors, on Earth's rotation rate. The animation on the left shows this cooling upstream of the warm localized heating region and how it depends on rotation rate. A curious aspect (explained by propagation properties of Rossby waves, see Kaspi and Schneider 2012) is that the cold region expands as the planetary rotation rate increases, although other wave scales generally decrease with increasing rotation rate.

Kaspi, Y., and T. Schneider, 2011a: Winter cold of eastern continental boundaries induced by warm ocean waters. Nature, 471, 621-624.
[Official version] [Nature News & Views] [Caltech News Release]

Kaspi, Y., and T. Schneider, 2011b: Downstream self-destruction of storm tracks. Journal of the Atmospheric Sciences, 68, 2459-2464.
[PDF] [Official version]

Kaspi, Y., and T. Schneider, 2012: The role of stationary eddies in shaping midlatitude storm tracks J. Atmos. Sci., submitted.

Tidally Locked Earth

(Timothy Merlis and Tapio Schneider, 2010)

To explore climate dynamics of tidally locked Earth-like exoplanets and to illustrate how the climate would adjust if Earth abruptly entered a tidally locked state, we conducted simulations with the GFDL CM2.1 coupled climate model (Delworth et al. 2006). Starting from a typical January 1 initial condition in the present-day climate, we set the planetary rotation rate to 1/365th of the present value (so that 1 day is equal to 1 current Earth year). We fixed the insolation so that there is a perpetual subsolar point on the equator at 88°W (near the coast of Ecuador). The simulation was run for 50 years. This simulation with a comprehensive coupled climate model illustrates and expands upon the dynamics discussed in the context of an aquaplanet atmosphere-only model in Merlis and Schneider (2010).

Delworth et al. 2006: GFDL's CM2 global coupled climate models. Part I: Formulation and simulation characteristics. Journal of Climate, 19, 643-674.
[Official version]

Merlis, T. M. and T. Schneider, 2010: Atmospheric dynamics of Earth-like tidally locked aquaplanets. Journal of Advances in Modeling Earth Systems, 2, Art. #13, 17 pp.
[PDF] [Official version] [Correction]
Zonal wind animations: [Slow rotation] [Rapid rotation]

Surface Temperature

The surface temperature changes rapidly over land masses to day-side values of about 290 K and to night-side values of about 240 K. The ocean surface temperature changes more slowly; the night-side ocean remains near the freezing point for the length of the simulation.


Precipitation patterns change rapidly (within a few months) from the zonally-elongated intertropical convergence zone that is typical of Earth today to a configuration in which there is substantial precipitation near the subsolar point and little precipitation on the night-side of the planet. The regions of large precipitation are determined by the atmospheric circulation: the near-surface atmospheric flow converges near the subsolar point, leading to strong ascending motion and condensation (see Merlis and Schneider (2010) for a detailed discussion). The topography (e.g., the Andes) modulates the precipitation patterns so that they are less concentric about the subsolar point than in the aquaplanet simulations in Merlis and Schneider (2010).

Evaporation Minus Precipitation

The net evaporation field (evaporation minus precipitation) shows that atmospheric water vapor is transported from the night side to the day side. Regions on the day side of the planet away from the subsolar point, such as Canada, experience net drying. They become relatively warm because of the loss of evaporation as a cooling mechanism for the surface. Sufficiently far from the subsolar point, there is net evaporation, which eventually would lead to the formation of deserts and complicating habitability of those regions.

Sea Ice

Because the ocean is actively convecting where it is near freezing, no sea ice forms during this simulation, except near the coasts. However, the ocean surface will eventually freeze (on the much longer timescales needed to cool the entire water column to freezing). It may seem surprising that no widespread sea ice forms on the night side of the planet within 50 years; after all, new sea ice forms every winter in Earth's high latitudes. However, Earth's polar regions currently experience net precipitation, and the fresh water effect on the ocean density allows the surface to freeze without the need for the entire column of ocean water to reach the freezing point. In contrast, the night side of the tidally locked Earth experiences net evaporation, so the ocean surface is becoming cooler and saltier, so convection penetrates deeper into the interior ocean as the simulation progresses and prevents the surface from freezing.

Giant Planets

(Junjun Liu and Tapio Schneider, 2010)

We have carried out the first 3D simulations of all four giant planets (Jupiter, Saturn, Uranus, Neptune) with closed energy and angular momentum balances that are consistent with observations (Liu and Schneider 2010). The simulations reproduce many large-scale features of the observed flows, such as equatorial superrotation on Jupiter and Saturn and equatorial subrotation on Uranus and Neptune.

The simulations resolve the flow in the upper atmospheres of the giant planets, with implicit links to the (convective) flow, mean meridional circulations and (likely magnetohydrodynamic) dissipation mechanisms at depth. Here are animations of the zonal wind and vorticity at the level in the model that corresponds roughly to the estimated level of the cloud tops from which the observed flows are inferred:

Coherent vortices form in these simulations and are recognizable in the vorticity fields. They are particularly large in the polar regions, as seen in the polar projections of the vorticity in the Saturn simulations.

Earlier we had carried out simulations of Jupiter with the same model (Schneider and Liu 2009), but with slightly different choices of dissipation parameters (which are poorly constrained by data). This leads to weaker and narrower jets than in the later simulations: [zonal wind] [vorticity]

Liu, J., and T. Schneider, 2010: Mechanisms of jet formation on the giant planets. Journal of the Atmospheric Sciences, 67, 3652-3672.
[PDF] [Official version]

Schneider, T., and J. Liu, 2009: Formation of jets and equatorial superrotation on Jupiter. Journal of the Atmospheric Sciences, 66, 579-601.
[PDF] [Official version]

Spinup of General Circulation

The atmospheric circulation of a planet that has no zonal asymmetries in boundary conditions will remain axisymmetric if the initial condition is. So we can calculate the "ideal" Hadley circulation that would result in that case by choosing an axisymmetric initial condition in an idealized GCM without zonal inhomogeneities in boundary conditions. However, for an Earth-like planet, the resulting axisymmetric circulation is unstable with respect to non-axisymmetric perturbations.

Spinup of General Circulation from Axisymmetric State

This animation (produced by Tim Merlis) shows the spinup of a macroturbulent circulation from an axisymmetric circulation. The upper panel shows zonal-mean zonal wind and the lower panel shows surface air temperature, with the zonal mean in the small white panel on the right.

In the macroturbulent simulation, there is no subgrid-scale diffusion of heat or momentum above the planetary boundary layer. Vertical subgrid-scale diffusion of heat and momentum is necessary for stability in the axisymmetric simulations. Because the subgrid-scale diffusion is turned off when the three-dimensional perturbation is added to the axisymmetric circulation, the Hadley circulation first weakens before it strengthens when large-scale eddies form. (See Schneider (2006) for a description of the simulation.)

Schneider, T., 2006: The general circulation of the atmosphere. Annual Reviews of Earth and Planetary Sciences, 34, 655-688.
[PDF] [Official version]

Global warming since the 19th century

Temperature changes can be decomposed into slow interdecadal components and faster intradecadal components. The slowest components of temperature changes have the largest ratio R of interdecadal variance to intradecadal variance; faster components of temperature changes have a smaller ratio R of interdecadal variance to intradecadal variance. By filtering out components with smaller variance ratios R, we can isolate the slow component of temperature changes. Any anthropogenic component of temperature changes is expected to be contained in this slow component.

Annual Mean Temperatures, 1850-2014

The upper panel of the animation shows the slow component of temperature changes between 22.5°S and 67.5°N, an area with sufficient data coverage since 1890 to allow this multivariate analysis. The indicated temperature changes are changes relative to the period 1850-1900.

The lower panel shows the time series of area-mean temperature changes (black) and the area-mean temperature change accounted for by the slow component in the main panel (red).

Gray areas in the upper panel are areas with insufficient data coverage for this analysis.

See also the following seasonal mean temperature animations:

Several of the temperature changes are suggestive of human influences on climate. For example, the relatively uniform and steady warming of the ocean surfaces, the generally enhanced warming of continents, and the strong warming of high northern latitudes, particularly in the transition seasons, is consistent with expected effects of increases in greenhouse gas concentrations. The localized cooling between about 1950 and 1970 over industrial regions such as Europe and Southeast Asia, where anthropogenic sulfate aerosol loadings were high, is consistent with the expected cooling effect of sulfate aerosols. Also recognizable are numerous apparently natural climate variations, for example, strong temporary cooling in the North Atlantic from the 1950s through the 1970s, which contributed to the lack of global-mean temperature increase during that time.

The animations are produced using the methods described in Schneider and Held (2001). As in the paper, the data are from the Climatic Research Unit at the University of East Anglia (dataset HadCRUT3v). The analysis in the paper has been extended to the annual mean and to all seasons, including data through 2014. The overlapping decadal data groups used to determine the slow temperature variance are defined similarly to the analysis in the paper but are centered on the years 1858, ..., 2008, with 15 years between successive group centers. The temperature changes represented in the animations are those accounted for by all discriminants with a variance ratio R corresponding to a p-value less than 0.1 determined by a bootstrap procedure (i.e., with a less than 10% chance of occuring if there is no coherent decadal variability). There are 2 to 4 such discriminants in each animations (i.e., the temperature changes in the animations have 2 to 4 spatial degrees of freedom).

Schneider, T., and I. M. Held, 2001: Discriminants of twentieth-century changes in Earth surface temperatures. Journal of Climate, 14, 249-254.
[PDF] [Official version]